
Title Development and use of Learner Assessment

Theme: How Learning through making mistakes promotes stronger problem solving, student
engagement and confidence at assessment

Keywords: Confidence Engagement performance at Assessment

Short Abstract: Tutor shows his own fallibility to demonstrate problem solving and promote
confidence in learners in how they approach problems and are ac�ve in their own learning.

Case Study

Connor Duignan – Tutorial Approach

Programme – L6 Cer�ficate, Informa�on Technology for process digi�sa�on

Modules. Introduc�on to programming and Computer Architecture

Background

I run tutorials for a set of Level 6 computer science modules to help students tackle the prac�cal and
code-based aspects of the module such as programming languages. All of my students are adult
learners and many of them have a basic understanding of compu�ng, but some have never even
approached a computer-scienced related topic before, thus there can some trepida�on around the
topic and assessments.

Tutorials and tumbleweeds

The tutorials are conducted online via Zoom, so when I log-in I see an ocean of names and no faces;
at this point it is usually very quiet and the students will hesitate to even say “hello”. I share my
screen when we’re ready so that the students can see what I’m doing.

To start a tutorial, I will first give a brief summary in my own words of the topics that were covered in
the preceding lecture, laying out the some�mes very long lesson into a few topics of discussion.
Depending on the engagement level of the class, I may get ques�on at this point to go over a
par�cular topic, but most of the �me I need to coax interac�on out of the class by simply beginning
and then asking them ques�ons.

I do this by first sta�ng what I’m trying to accomplish with a piece of computer code, then I start to
write the code from memory, sta�ng exactly what I’m doing at every point and what each snippet of
code is meant to do. I find that students can follow along more successfully if I explain as I go along,
and I get engagement out of the students by asking for sugges�ons in either the layout of the code
or the names of the variables, o�en making jokes about the prevalence of fruit in the examples the
main lecturer uses in the course notes.

Imperfec�on and problem solving

 I o�en inten�onally do not look at my reference material so that my code will be imperfect (and
o�en not func�onal), so that I need to work it out in front of the students. Through this I
demonstrate the problem-solving process that is the core to being a successful programmer. This
allows the students know that I am a human who makes mistakes and not an infallible expert that
they cannot keep up with or relate to.

I ask the students what the outcome of what the code will be, and at this stage the class is much
more comfortable in giving answers. I then run the code and see the result, which some�mes
contains an error or a warning which gives me the perfect opportunity to examine the code and its
intended results more closely. I go through the error in the code with the class and I ask them what
they think the problem may be, I then o�en use my reference material to discover my mistake. I fix
the error while explaining what went wrong, and the theory behind what went wrong. Most of my
best teaching moments have come from me making a mistake. In computers, doing something right
can almost seem like magic to someone who doesn’t know how the process works, but ge�ng
something wrong and then fixing it allows them to understand that it is a logical system of rules and
interac�ons that are consistent.

Eager and Engaged

This style of tutoring helps build a rapport with my students, and o�en by assessment �me they are
much more comfortable engaging with the tutorial and asking ques�ons. So for the assessment, I
adjust my approach to le�ng the students control more of the flow of the tutorials and using their
ques�ons to guide to us par�cular topics. At this stage, the students are familiar with my approach
and are able to ar�culate their ques�ons more effec�vely. Some�mes this results in almost too much
engagement, so I split my tutorials in two: one sec�on to go over sample assessment ques�ons in
detail, and one to answer ques�ons.

Prepara�on for assessment via problem solving.

To prepare to for assessment ques�ons, I will let the students answer the ques�ons themselves. I
begin by wri�ng the set-up code, and I write the proper syntax, but the students are the ones giving
sugges�ons on how to solve the problem. If there is a problem to which they cannot find the
solu�on, I will explain the theory behind it and decrypt the ques�on from computer code into logic
that the students can quickly solve. I don’t answer the ques�ons for them because that is not going
to help the student in an assessment situa�on, but I do help them find a solu�on. At the end of the
day, programming is mostly about problem solving and that’s the skill I aim to teach and is a key
learning outcome.

For the ques�on-and-answer por�on, it o�en consists of students who are stuck on a single piece of
a topic that just doesn’t make sense to them. I will then write some code and explain it word by
word, showing how code works and then changes as I add to it. Again, I will some�mes inten�onally
introduce an error into the code so that I can demonstrate the kind of mistakes that students o�en
make when wri�ng that par�cular piece of code and how it affects the surrounding programme.

The key when dealing with students who are struggling is pa�ence, and once they know that they
can take their �me, they relax and can begin learning at their own pace.

Summary

Overall making mistakes and having the confidence in your ability to solve the problem created a
level of confidence in the students to approach assessment and examina�on briefs and ques�ons
with curiosity and crea�vity which has let to stronger performance in their assignments and
examina�ons.

